Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The insufficient energy and spatial resolutions of radionuclide imaging with conventional scintillation detectors restrict the visualization of multiple radionuclides and of microstructures in tissue. Here we report the development and performance of an imaging system equipped with a cadmium telluride diode detector that achieves an energy resolution of 1.7% at 140 keV and a spatial resolution of 250 μm. The combination of high-resolution spectra fitted to an X-ray analysis model of the emission lines of the radionuclides in a chosen energy band allowed us to accurately determine individual radiation activities from three radionuclides to simultaneously visualize thyroid tissue (via intravenously administered iodine-125), mandibular lymph nodes (via the intramuscular injection of indium-111) and parotid lymph nodes (via a subcutaneous injection of technetium-99m) in mice. Multi-radionuclide imaging may find advantageous applications in biomedical imaging. © 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Citation

Atsushi Yagishita, Shin'ichiro Takeda, Miho Katsuragawa, Tenyo Kawamura, Hideaki Matsumura, Tadashi Orita, Izumi O Umeda, Goro Yabu, Pietro Caradonna, Tadayuki Takahashi, Shin Watanabe, Yousuke Kanayama, Hiroshi Mizuma, Kazunobu Ohnuki, Hirofumi Fujii. Simultaneous visualization of multiple radionuclides in vivo. Nature biomedical engineering. 2022 May;6(5):640-647

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35379956

View Full Text