Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Oats (Avena sativa L.) are well known for their nutritional properties but are susceptible to the growth of different Fusarium fungi resulting in mycotoxin contamination of harvested oats. In this study, oat samples from harvest years 2011 to 2017 were preselected for their suitability as milling oats for food purposes with DON contents below 1750 µg/kg. The reduction of DON, T-2 and HT-2 toxins during the commercial de-hulling process was analysed. While the average reduction for the sum of T-2 and HT-2 toxins in large oat kernels was 85%, the reduction for thin kernels was 66%. The reduction for DON was about 60% and did not differ for the two kernel fractions. In laboratory de-hulling experiments, milling oat samples and de-hulled oat kernels with known DON, T-2 and HT-2 toxin content were correlated with the associated DNA amount of Fusarium graminearum, Fusarium culmorum and Fusarium langsethiae. The reduction of the Fusarium DNA amount after de-hulling was comparable to the reduction of the associated mycotoxins. Notably, the correlation between F. langsethiae DNA amounts and the sum of T-2 and HT-2 toxin contents was R2 = 0.69 in milling oats and it rose to R2 = 0.85 in de-hulled oat kernels. In laboratory tests, at least one third of the initial levels of DON and the sum of T-2 and HT-2 toxins could be removed by polishing off the first parts of the outer layers; two thirds remained in the polished oat kernels. These observations indicate that de-hulling alone may not be completely sufficient to remove mycotoxin contamination in oats. These findings are of high importance in the discussion of determining legal maximum levels for DON or the sum of T-2 and HT-2 toxins in intermediate and final products.

Citation

Jens C Meyer, Tim Birr, Inga Hennies, Detlev Wessels, Karin Schwarz. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 Jun;39(6):1163-1183

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35385360

View Full Text