Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Loss of podocytes is a common feature of diabetic renal injury and a key contributor to the development of albuminuria. We found that podocyte Rho associated coiled-coil containing protein kinase 2 (ROCK2) is activated in rodent models and patients with diabetes. Mice that lacked ROCK2 only in podocytes (PR2KO) were resistant to albuminuria, glomerular fibrosis, and podocyte loss in multiple animal models of diabetes (i.e., streptozotocin injection, db/db, and high-fat diet feeding). RNA-sequencing of ROCK2-null podocytes provided initial evidence suggesting ROCK2 as a regulator of cellular metabolism. In particular, ROCK2 serves as a suppressor of peroxisome proliferator-activated receptors α (PPARα), which rewires cellular programs to negatively control the transcription of genes involved in fatty acid oxidation and consequently induce podocyte apoptosis. These data establish ROCK2 as a nodal regulator of podocyte energy homeostasis and suggest this signaling pathway as a promising target for the treatment of diabetic podocytopathy. © 2022. The Author(s).

Citation

Keiichiro Matoba, Yusuke Takeda, Yosuke Nagai, Kensuke Sekiguchi, Rikako Ukichi, Hiroshi Takahashi, Daisuke Aizawa, Masahiro Ikegami, Toshiaki Tachibana, Daiji Kawanami, Yasushi Kanazawa, Tamotsu Yokota, Kazunori Utsunomiya, Rimei Nishimura. ROCK2-induced metabolic rewiring in diabetic podocytopathy. Communications biology. 2022 Apr 08;5(1):341

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35396346

View Full Text