Correlation Engine 2.0
Clear Search sequence regions


Antigen-presenting cells (APCs) present three activating signals to T cells engaged in physical contact: 1) antigen, 2) costimulation/corepression, and 3) soluble cytokines. T cells release two kinds of effector particles in response to activation: trans-synaptic vesicles (tSVs) and supramolecular attack particles, which transfer intercellular messengers and mediate cytotoxicity, respectively. These entities are quickly internalized by APCs engaged in physical contact with T cells, making their characterization daunting. This paper presents the protocol to fabricate and use Bead-Supported Lipid Bilayers (BSLBs) as antigen-presenting cell (APC) mimetics to capture and analyze these trans-synaptic particles. Also described are the protocols for the absolute measurements of protein densities on cell surfaces, the reconstitution of BSLBs with such physiological levels, and the flow cytometry procedure for tracking synaptic particle release by T cells. This protocol can be adapted to study the effects of individual proteins, complex ligand mixtures, pathogen virulence determinants, and drugs on the effector output of T cells, including helper T cells, cytotoxic T lymphocytes, regulatory T cells, and chimeric antigen receptor-expressing T cells (CART).

Citation

Pablo F Céspedes, Michael L Dustin. Preparation of Bead-supported Lipid Bilayers to Study the Particulate Output of T Cell Immune Synapses. Journal of visualized experiments : JoVE. 2022 Apr 01(182)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35435908

View Full Text