Correlation Engine 2.0
Clear Search sequence regions


  • food (3)
  • food analysis (4)
  • humans (1)
  • quantum dots (4)
  • research (1)
  • Sizes of these terms reflect their relevance to your search.

    The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.

    Citation

    Jincheng Xiong, Huixia Zhang, Linqian Qin, Shuai Zhang, Jiyue Cao, Haiyang Jiang. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. International journal of molecular sciences. 2022 Apr 07;23(8)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35456904

    View Full Text