Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

SNARE proteins play an important role in different biological functions. This study aims to investigate the contribution of a new class of molecular descriptors (called SNARER) related to the chemical-physical properties of proteins in order to evaluate the performance of binary classifiers for SNARE proteins. We constructed a SNARE proteins balanced dataset, D128, and an unbalanced one, DUNI, on which we tested and compared the performance of the new descriptors presented here in combination with the feature sets (GAAC, CTDT, CKSAAP and 188D) already present in the literature. The machine learning algorithms used were Random Forest, k-Nearest Neighbors and AdaBoost and oversampling and subsampling techniques were applied to the unbalanced dataset. The addition of the SNARER descriptors increases the precision for all considered ML algorithms. In particular, on the unbalanced DUNI dataset the accuracy increases in parallel with the increase in sensitivity while on the balanced dataset D128 the accuracy increases compared to the counterpart without the addition of SNARER descriptors, with a strong improvement in specificity. Our best result is the combination of our descriptors SNARER with CKSAAP feature on the dataset D128 with 92.3% of accuracy, 90.1% for sensitivity and 95% for specificity with the RF algorithm. The performed analysis has shown how the introduction of molecular descriptors linked to the chemical-physical and structural characteristics of the proteins can improve the classification performance. Additionally, it was pointed out that performance can change based on using a balanced or unbalanced dataset. The balanced nature of training can significantly improve forecast accuracy. © 2022. The Author(s).

Citation

Alessia Auriemma Citarella, Luigi Di Biasi, Michele Risi, Genoveffa Tortora. SNARER: new molecular descriptors for SNARE proteins classification. BMC bioinformatics. 2022 Apr 24;23(1):148

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35462533

View Full Text