Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The progression and recurrence of pterygium mainly occur due to the abnormal proliferation and migration of stromal pterygium fibroblasts. This research explores the aberrant expression of small nucleolar RNA U3 (U3 snoRNA) in pterygium and elucidates the molecular mechanisms of U3 snoRNA in pterygium development. Primary human conjunctival fibroblasts (HCFs) and human pterygium fibroblasts (HPFs) were separated and cultured from fresh conjunctiva grafts and pterygium tissues. The PLKO.1 lentiviral system and CRISPR/Cas9 recombinant construct were, respectively, used to overexpress and silence U3 snoRNA in HPFs and HCFs for further specific phenotype analysis. RNA-seq and TMT-labeled quantitative protein mass spectrometry were utilized to evaluate the effect of U3 snoRNA on mRNA transcripts and protein synthesis. Reduced U3 snoRNA in pterygium promotes HCF or HPF cells' proliferation, migration, and cell cycle but has no significant effect on apoptosis. U3 snoRNA modulates 18S rRNA synthesis through shearing precursor ribosomal RNA 47S rRNA at the 5' external transcribed spacer (5' ETS). Moreover, the altered U3 snoRNA causes mRNA and protein differential expression in HCF or HPF cells. The atypical U3 snoRNA regulates the translation of specific proteins to exert a suppressive function in pterygium through modulating the 18S rRNA synthesis. Here, we uncover a novel insight into U3 snoRNA biology in the development of pterygium.

Citation

Xin Zhang, Yaping Jiang, Qian Wang, Weishu An, Xiaoyan Zhang, Ming Xu, Yihui Chen. Atypical U3 snoRNA Suppresses the Process of Pterygium Through Modulating 18S Ribosomal RNA Synthesis. Investigative ophthalmology & visual science. 2022 Apr 01;63(4):17

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35472218

View Full Text