Correlation Engine 2.0
Clear Search sequence regions

  • behavior (2)
  • ionic liquid (2)
  • polymer (2)
  • pvdf (11)
  • Sizes of these terms reflect their relevance to your search.

    Compatibilization of immiscible blends is critically important for developing high-performance polymer materials. In this work, an ionic liquid, 1-vinyl-3-butyl imidazole chloride, grafted polyamide 6 (PA6-g-IL(Cl)) with a quasi-block structure was used as a compatibilizer for an immiscible poly(vinylidene fluoride) (PVDF)/PA6 blend. The effects of two PA6-g-IL(Cl)s (E-2%-50K and E-8%-50K) on the morphology, crystallization behavior, mechanical properties, and surface resistance of the PVDF/PA6 blend were investigated systematically. It was found that the two types of PA6-g-IL(Cl)s had a favorable compatibilization effect on the PVDF/PA6 blend. Specifically, the morphology of the PVDF/PA6 = 60/40 blend transformed from a typical sea-island into a bicontinuous structure after incorporating E-8%-50K with a high degree of grafting (DG). In addition, the tensile strength of the PVDF/PA6/E-8%-50K blend reached 66 MPa, which is higher than that of PVDF, PA6 and the PVDF/PA6 blend. Moreover, the PVDF/PA6/E-8%-50K blend exhibited surface conductivity due to the conductive path offered by the bicontinuous structure and conductive ions offered by grafted IL(Cl). Differential scanning calorimetry (DSC) and wide-angle X-ray diffractometry (WAXD) results revealed that PA6-g-IL(Cl) exhibits different effects on the crystallization behavior of PVDF and PA6. The compatibilization mechanism was concluded to be based on the fact that the nongrafted PA6 blocks entangled with the PA6 chains, while the ionic liquid-grafted PA6 blocks interacted with the PVDF chains. This work offers a new strategy for the compatibilization of immiscible polymer blends. © 2022 The Authors. Published by American Chemical Society.


    Xin Zheng, Yongjin Li, Juntao Tang, Guipeng Yu. Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. ACS omega. 2022 Apr 19;7(15):12772-12778

    PMID: 35474804

    View Full Text