Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Teaching traditionally asserts that the arterial pressure pulse is dampened across the capillary bed to the extent that pulsatility is nonexistent in the venous circulation of the lower limbs. Herein, we present evidence of transmission of arterial pulsations across the capillary network into perforator veins in the lower limbs of healthy, heat-stressed humans. Perforator veins are connections from the superficial veins that drain into the deep veins. When assessed using ultrasound at rest, they infrequently demonstrate flow, and a pulsatile flow waveform is not described. We investigated perforator vein pulsatility in 10 young, healthy volunteers who underwent passive heating by +2°C core body temperature via a hot-water-perfused suit, and 5 who also underwent active heating by +2°C via low-intensity cycling while wearing the hot-water-perfused suit. At +0.5°C increments in temperature, blood velocity in an ankle perforator vein was measured using duplex ultrasound. In all perforators with heating, sustained flow was demonstrated, with a pulsatile waveform that was synchronous with the cardiac cycle. The maximum velocity was 30 ± 13 cm/s with passive heating and approximately half with active heating (P = 0.04). The small veins of the skin at the ankle also demonstrated increased perfusion with pulsatility, seen with low-velocity microvascular imaging technology. We consider explanations for this pulsatility and conclude that it is propagated from the arterial inflow through the skin microcirculation as a result of increased dilatation and flow volume and that this is a normal response to increased skin blood flow.


Kate N Thomas, Travis D Gibbons, Holly A Campbell, James D Cotter, Andre M van Rij. Pulsatile flow in venous perforators of the lower limb. American journal of physiology. Regulatory, integrative and comparative physiology. 2022 Jul 01;323(1):R59-R67

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35503236

View Full Text