Correlation Engine 2.0
Clear Search sequence regions


  • 2 c (1)
  • 4 and (6)
  • acceptor (7)
  • acetyl coa (1)
  • across (7)
  • agar (1)
  • alexa fluor 647 (2)
  • antibiotics (1)
  • appears (2)
  • atp (1)
  • bacteria (2)
  • behavior (20)
  • biofilms (10)
  • biotin (15)
  • BirA (4)
  • case (1)
  • cell membrane (7)
  • cell surfaces (1)
  • cell wall (1)
  • cellular (4)
  • channel- membrane (1)
  • concepts (1)
  • cytoplasm (1)
  • dark (1)
  • diffuses (1)
  • distances (2)
  • donor (1)
  • dyes (5)
  • e coli (6)
  • electron (49)
  • electron transfer (13)
  • electron transport (31)
  • escherichia coli (1)
  • factors (1)
  • faint (1)
  • fiji (2)
  • flavins (6)
  • gene (1)
  • glycerol (1)
  • gram (2)
  • h 17 (1)
  • heme (9)
  • heme- proteins (1)
  • hydrogen (1)
  • interact cell (1)
  • interest (3)
  • kanamycin (1)
  • lab (1)
  • lipid (1)
  • lipid bilayers (1)
  • lipid membrane (2)
  • look (1)
  • media cultures (1)
  • mgcl2 (2)
  • MR 1 (12)
  • Mtr (1)
  • oxygen (1)
  • past (1)
  • pbs 12 (1)
  • peptides (2)
  • periods (1)
  • periplasm (3)
  • phase (1)
  • plasmid (9)
  • porin (4)
  • probability (4)
  • proteins bacteria (2)
  • quantum dot (19)
  • redox (18)
  • RNase (1)
  • scale (13)
  • sds page (1)
  • serum (1)
  • shewanella (3)
  • signal (9)
  • size cell (1)
  • SLIMfast (5)
  • STC (1)
  • streptavidin (17)
  • suggests (4)
  • tens (1)
  • transport membrane (1)
  • transport proteins (1)
  • understand (2)
  • western blot (3)
  • Sizes of these terms reflect their relevance to your search.

    Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.

    Citation

    Grace W Chong, Sahand Pirbadian, Yunke Zhao, Lori A Zacharoff, Fabien Pinaud, Mohamed Y El-Naggar. Single molecule tracking of bacterial cell surface cytochromes reveals dynamics that impact long-distance electron transport. Proceedings of the National Academy of Sciences of the United States of America. 2022 May 03;119(19):e2119964119

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35503913

    View Full Text