Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The biogenesis of chitin, a major structural polysaccharide found in the cuticle and peritrophic matrix, is crucial for insect growth and development. Chitin synthase, a membrane-integral β-glycosyltransferase, has been identified as the core of the chitin biogenesis machinery. However, a yet unknown number of auxiliary proteins appear to assist in chitin biosynthesis, whose precise function remains elusive. Here, we identified a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), in the fruit fly Drosophila melanogaster, as a chitin biogenesis-associated protein. The physical interaction between DmSERCA and epidermal chitin synthase (Krotzkopf verkehrt, Kkv) was demonstrated and analyzed using split-ubiquitin membrane yeast two-hybrid, bimolecular fluorescent complementation, pull-down, and immunoprecipitation assays. The interaction involves N-terminal regions (aa 48-81 and aa 247-33) and C-terminal regions (aa 743-783 and aa 824-859) of DmSERCA and two N-terminal regions (aa 121-179 and aa 369-539) of Kkv, all of which are predicted be transmembrane helices. While tissue-specific knock-down of DmSERCA in the epidermis caused larval and pupal lethality, the knock-down of DmSERCA in wings resulted in smaller and crinkled wings, a significant decrease in chitin deposition, and the loss of chitin lamellar structure. Although DmSERCA is well-known for its role in muscular contraction, this study reveals a novel role in chitin synthesis, contributing to our knowledge on the machinery of chitin biogenesis. Copyright © 2022 Elsevier Ltd. All rights reserved.

Citation

Weixing Zhu, Yanwei Duan, Jiqiang Chen, Hans Merzendorfer, Xu Zou, Qing Yang. SERCA interacts with chitin synthase and participates in cuticular chitin biogenesis in Drosophila. Insect biochemistry and molecular biology. 2022 Jun;145:103783

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35525402

View Full Text