Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Here we have studied the effect of the thickness and printing orientation using PolyJet 3D printing to fabricate single-material cartridges with built-in porous frits enabling solid-phase extraction (SPE) by packing commercial sorbents. This is achieved by tuning the degree of interpenetration of the building material and the water-soluble support material used in PolyJet 3D printing by modifying the orientation of the print head respective to the frit. SPE cartridges printed at an orientation of 30° with a 150 μm thick integrated frit were selected for the SPE experiments in a compromise between frit permeability to flow and stability to retain commercial sorbents for SPE. The performance of the 3D printed cartridges was evaluated for the SPE of the endocrine-disrupting phenols 4-tert-octylphenol (4-tOP) and 4-nonylphenol (4-NP), comparing three commercial SPE sorbents (Evolute Express ABN, Bond Elut PPL, and Silica-C18). The best overall extraction performance was obtained using Silica-C18, and the main extraction parameters were optimized. Detection limits of 0.3 μg L-1 for 4-tOP and 1.1 μg L-1 for 4-NP were achieved using HPLC-DAD for analyte separation and quantification. Enrichment factors of 30.1 (4-tOP) and 16.2 (4-NP) were obtained under the selected conditions. The developed method was applied to water and milk powder samples obtaining satisfactory recoveries ranging from 97% to 103%. These results demonstrate the suitability of PolyJet 3D printing for the fabrication of miniaturized cartridges with integrated frits for SPE applications. Copyright © 2022 Elsevier B.V. All rights reserved.

Citation

Xinpeng Ren, Sepideh Keshan Balavandy, Feng Li, Michael C Breadmore, Fernando Maya. Miniaturized 3D printed solid-phase extraction cartridges with integrated porous frits. Analytica chimica acta. 2022 May 22;1208:339790

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35525582

View Full Text