Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

In this work, Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X were isolated and used to enhance N,N-dimethylacetamide (DMAC) degradation and mineralization efficiencies. The monoculture and co-culture of the two strains for DMAC degradation were compared; results indicated that, a degradation efficiency of 97.62% was obtained in co-culture, which was much higher than that of monocultures of HJM-8 (57.34%) and YBH-X (34.02%). The degradation mechanism showed that co-culture could efficiently improve extracellular polymeric substances production, electron transfer, and microbial activity. Meanwhile, the mineralization mechanism suggested that acetate was the dominant intermediate which had an inhibitory effect on HJM-8, and co-culture was conducive to mineralization due to the high performance of acetate conversion and Na+ K+-ATPase vitality. Besides, a pathway of DMAC biodegradation was proposed for co-culture: DMAC was degraded into acetate by HJM-8, then the accumulated acetate was mineralized by YBH-X. Additionally, the co-culture system was further optimized by Box-Behnken design. Copyright © 2022 Elsevier Ltd. All rights reserved.


Bohan Yuan, Jiachao Yao, Zeyu Wang, Luyao Dai, Min Zhao, Dzmitry Hrynsphan, Savitskaya Tatsiana, Jun Chen. Increasing N,N-dimethylacetamide degradation and mineralization efficiency by co-culture of Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X. Chemosphere. 2022 Sep;303(Pt 1):134935

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35561776

View Full Text