Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Ion channels at the nodes of Ranvier (NRs) are believed to play essential roles in intrinsic electrophysiological properties and saltatory conduction of action potentials (AP) at the NRs of myelinated nerves. While we have recently shown that two-pore domain potassium (K2P) channels play a key role at the NRs of Aβ-afferent nerves, K+ channels and their functions at the NRs of mammalian motor nerves remain elusive. Here we addressed this issue by using ex vivo preparations of lumbar spinal ventral nerves from both male and female rats and the pressure-patch-clamp recordings at their NRs. We found that depolarizing voltages evoked large noninactivating outward currents at NRs. The outward currents could be partially inhibited by voltage-gated K+ channel blockers, largely inhibited by K2P blockers and cooling temperatures. Inhibition of the outward currents by voltage-gated K+ channel blockers, K2P blockers, or cooling temperatures significantly altered electrophysiological properties measured at the NRs, including resting membrane potential, input resistance, AP width, AP amplitude, AP threshold, and AP rheobase. Furthermore, K2P blockers and cooling temperatures significantly reduced saltatory conduction velocity and success rates of APs in response to high-frequency stimulation. Voltage-gated K+ channel blockers reduced AP success rates at high-frequency stimulation without significantly affecting saltatory conduction velocity. Collectively, both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. The effects of cooling temperatures on saltatory conduction are at least partially mediated by K2P channels at the NRs.SIGNIFICANCE STATEMENT Ion channels localized at the NRs are believed to be key determinants of saltatory conduction on myelinated nerves. However, ion channels and their functions at the NRs have not been fully studied in different types of mammalian myelinated nerves. Here we use the pressure-patch-clamp recordings to show that both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of lumbar spinal ventral nerves of rats. Furthermore, cooling temperatures exert effects on saltatory conduction via inhibition of ion channels at the NRs. Our results provide new insights into saltatory conduction on myelinated nerves and may have physiological as well as pathologic implications. Copyright © 2022 the authors.

Citation

Sotatsu Tonomura, Jianguo G Gu. Role of Voltage-Gated K+ Channels and K2P Channels in Intrinsic Electrophysiological Properties and Saltatory Conduction at Nodes of Ranvier of Rat Lumbar Spinal Ventral Nerves. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2022 Jun 22;42(25):4980-4994

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35606142

View Full Text