Correlation Engine 2.0
Clear Search sequence regions

filter terms:
Sizes of these terms reflect their relevance to your search.

Lost circulation in fractured formation is the first major technical problem that restricts improvements in the quality and efficiency of oil and gas drilling engineering. Improving the success rate of one-time lost circulation control is an urgent demand to ensure "safe, efficient and economic" drilling in oilfields all over the world. In view of the current situation, where drilling fluid loss occurs and the plugging mechanism of fractured formation is not perfect, this paper systematically summarizes the drilling fluid loss mechanism and model of fractured formation. The mechanism and the main influencing factors to improve the formation's pressure-bearing capacity, based on stress cage theory, fracture closure stress theory, fracture extension stress theory and chemical strengthening wellbore theory, are analyzed in detail. The properties and interaction mechanism of various types of lost circulation materials, such as bridging, high water loss, curable, liquid absorption and expansion and flexible gel, are introduced. The characteristics and distribution of drilling fluid loss in fractured formation are also clarified. Furthermore, it is proposed that lost circulation control technology for fractured formation should focus on the development of big data and intelligence, and adaptive and efficient intelligent lost circulation material should be continuously developed, which lays a theoretical foundation for improving the success rate of lost circulation control in fractured formation.


Jingbin Yang, Jinsheng Sun, Yingrui Bai, Kaihe Lv, Guodong Zhang, Yuhong Li. Status and Prospect of Drilling Fluid Loss and Lost Circulation Control Technology in Fractured Formation. Gels (Basel, Switzerland). 2022 Apr 21;8(5)

PMID: 35621558

View Full Text