Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Brugada syndrome (BrS) is a fatal arrhythmia that causes an estimated 4% of all sudden death in high-incidence areas. SCN5A encodes cardiac sodium channel NaV1.5 and causes 25 to 30% of BrS cases. Here, we report generation of a knock-in (KI) mouse model of BrS (Scn5aG1746R/+). Heterozygous KI mice recapitulated some of the clinical features of BrS, including an ST segment abnormality (a prominent J wave) on electrocardiograms and development of spontaneous ventricular tachyarrhythmias (VTs), seizures, and sudden death. VTs were caused by shortened cardiac action potential duration and late phase 3 early afterdepolarizations associated with reduced sodium current density (INa) and increased Kcnd3 and Cacna1c expression. We developed a gene therapy using adeno-associated virus serotype 9 (AAV9) vector-mediated MOG1 delivery for up-regulation of MOG1, a chaperone that binds to NaV1.5 and traffics it to the cell surface. MOG1 was chosen for gene therapy because the large size of the SCN5A coding sequence (6048 base pairs) exceeds the packaging capacity of AAV vectors. AAV9-MOG1 gene therapy increased cell surface expression of NaV1.5 and ventricular INa, reversed up-regulation of Kcnd3 and Cacna1c expression, normalized cardiac action potential abnormalities, abolished J waves, and blocked VT in Scn5aG1746R/+ mice. Gene therapy also rescued the phenotypes of cardiac arrhythmias and contractile dysfunction in heterozygous humanized KI mice with SCN5A mutation p.D1275N. Using a small chaperone protein may have broad implications for targeting disease-causing genes exceeding the size capacity of AAV vectors.

Citation

Gang Yu, Susmita Chakrabarti, Miroslava Tischenko, Ai-Lan Chen, Zhijie Wang, Hyosuk Cho, Brent A French, Sathyamangla V Naga Prasad, Qiuyun Chen, Qing K Wang. Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy. Science translational medicine. 2022 Jun 08;14(648):eabf3136

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35675436

View Full Text