Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with synaptic dysfunction and dendritic spine loss and the pathologic hallmarks of β-amyloid (Aβ) plaques and hyperphosphorylated tau tangles. 14-3-3 proteins are a highly conserved family of proteins whose functions include regulation of protein folding, neuronal architecture, and synaptic function. Additionally, 14-3-3s interact with both Aβ and tau, and reduced levels of 14-3-3s have been shown in the brains of AD patients and in AD mouse models. Here, we examine the neuroprotective potential of the 14-3-3θ isoform in AD models. We demonstrate that 14-3-3θ overexpression is protective and 14-3-3θ inhibition is detrimental against oligomeric Aβ-induced neuronal death in primary cortical cultures. Overexpression of 14-3-3θ using an adeno-associated viral (AAV) vector failed to improve performance on behavioral tests, improve Aβ pathology, or affect synaptic density in the J20 AD mouse model. Similarly, crossing a second AD mouse model, the AppNL-G-F knock-in (APP KI) mouse, with 14-3-3θ transgenic mice failed to rescue behavioral deficits, reduce Aβ pathology, or impact synaptic density in the APP KI mouse model. 14-3-3θ is likely partially insolubilized in the APP models, as demonstrated by proteinase K digestion. These findings do not support increasing 14-3-3θ expression as a therapeutic approach for AD. Copyright © 2022 Gannon et al.


Mary Gannon, Bing Wang, Sara Anne Stringfellow, Stephan Quintin, Itzel Mendoza, Thanushri Srikantha, A Claire Roberts, Takashi Saito, Takaomi C Saido, Erik D Roberson, Talene A Yacoubian. 14-3-3θ Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse Models. eNeuro. 2022 May-Jun;9(3)

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35697511

View Full Text