Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Glaucoma is a neurodegenerative disorder caused by the death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is a cause of glaucoma. However, glaucoma often develops with normal IOP and is known as normal-tension glaucoma (NTG). Glutamate neurotoxicity is considered as one of the significant causes of NTG, resulting in excessive stimulation of retinal neurons via the N-methyl-D-aspartate (NMDA) receptors. The present study examined the phosphorylation of collapsin response mediator protein-2 (CRMP2), a protein that is abundantly expressed in neurons and involved in their development. In two mouse models, NMDA-injection and glutamate/aspartate transporter (GLAST) mutant, CRMP2 phosphorylation at the cyclin-dependent kinase-5 (Cdk5) site was elevated in RGCs. We confirmed that the decrease in the number of RGCs and thickness of the inner retinal layer (IRL) could be suppressed after NMDA administration in CRMP2KI/KI mice with genetically inhibited CRMP2 phosphorylation. Next, we investigated GLAST heterozygotes (GLAST+/-) with CRMP2KI/KI (GLAST+/-;CRMP2KI/KI) and GLAST knockout (GLAST-/-) mice with CRMP2KI/KI (GLAST-/-;CRMP2KI/KI) mice and compared them with GLAST+/- and GLAST-/- mice. pCRMP2 (S522) inhibition significantly reduced RGC loss and IRL thinning. These results suggest that the inhibition of CRMP2 phosphorylation could be a novel strategy for treating NTG. © 2022 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

Citation

Musukha Mala Brahma, Kazuya Takahashi, Kazuhiko Namekata, Takayuki Harada, Yoshio Goshima, Toshio Ohshima. Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes to cells : devoted to molecular & cellular mechanisms. 2022 Aug;27(8):526-536

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35703119

View Full Text