Correlation Engine 2.0
Clear Search sequence regions


  • adults (1)
  • carboxyethyl hydroxychroman (3)
  • chromans (2)
  • female (1)
  • flower (1)
  • food (1)
  • humans (1)
  • plasma (10)
  • tocopherol (6)
  • vitamin e (15)
  • α cehc (12)
  • γ cehc (20)
  • γ tocopherol (9)
  • Sizes of these terms reflect their relevance to your search.

    Urinary metabolites of vitamin E, i.e., α- and γ-carboxyethyl hydroxychroman (α- and γ-CEHC), have gained increasing attention and have been proposed as novel biomarkers of vitamin E intake and status. However, there are insufficient data on the relationship of plasma α-tocopherol and γ-tocopherol and dietary vitamin E intake with 24 h urinary excretions of α- and γ-CEHC. We aimed to (1) investigate the associations of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC with plasma α- and γ-tocopherol, respectively; (2) investigate the associations of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC with dietary vitamin E intake, and we hypothesize that 24 h urinary excretions of α- and γ-CEHC will better correlate with vitamin E intake than urinary α- and γ-CEHC/creatinine ratios. 24 h Urine and plasma samples were collected from 1519 participants (60-75 years, male: 50%) included in the Lifelines-MINUTHE Study for the assessments of urinary α- and γ-CEHC/creatinine ratios and 24 h urinary excretions of α- and γ-CEHC, and plasma α- and γ-tocopherol. Among those participants, dietary vitamin E intake data from 387 participants were available from an externally validated Flower-Food Frequency Questionnaire (FFQ). The associations of plasma α- and γ-tocopherol, dietary vitamin E intake, with urinary α- and γ-CEHC were assessed using multivariate linear regressions. 24 h Urinary excretion of α-CEHC (median (IQR): 0.9 (0.3-2.4) µmol) was less than that of γ-CEHC (median (IQR): 1.5 (0.5-3.5) µmol). After adjustment for covariates, we found that 24 h urinary α-CEHC excretion and urinary α-CEHC/creatinine ratio were both positively associated with plasma α-tocopherol (std.beta: 0.06, p = 0.02; std.beta: 0.06, p = 0.01, respectively). Furthermore, the sum of 24 h urinary α- and γ-CEHC excretions was positively associated with dietary vitamin E intake (std.beta: 0.08; p = 0.03), whereas there was no relation between urinary α- and γ-CEHC/creatinine ratios and vitamin E intake. No association was observed neither between plasma α- and γ-tocopherol and dietary vitamin E intake, nor between urinary γ-CEHC and plasma γ-tocopherol. Our study confirmed our hypothesis that 24 h urinary α- and γ-CEHC excretions would be a better marker for dietary vitamin E intake than urinary α- and γ-CEHC/creatinine ratios. Considering that both 24 h urinary α- and γ-CEHC excretions and α- and γ-CEHC/creatinine ratios were also associated with plasma α-tocopherol status, we suggest that 24 h urinary α- and γ-CEHC excretions could be used to assess overall vitamin E status. © 2022. The Author(s).

    Citation

    Yinjie Zhu, Jan Frank, Ineke J Riphagen, Isidor Minović, Michel J Vos, Manfred L Eggersdorfer, Gerjan J Navis, Stephan J L Bakker. Associations of 24 h urinary excretions of α- and γ-carboxyethyl hydroxychroman with plasma α- and γ-tocopherol and dietary vitamin E intake in older adults: the Lifelines-MINUTHE Study. European journal of nutrition. 2022 Oct;61(7):3755-3765

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35718823

    View Full Text