Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by endophytic bacteria including Serratia sp. Ba10, Pantoea sp. Sa14, Enterobacter sp. Ou80, Pseudomonas sp. Ou22, Pseudomonas sp. Sn48 and Pseudomonas sp. Ba35, which were previously isolated from healthy domesticated and wild-growing grapevine were evaluated in terms of their effects on the virulence traits of Agrobacterium tumefaciens Gh1, the causal agent of crown gall disease. Based on the gas chromatography-mass spectrometry analysis, 16, 15, 14, 7, 16, and 15 VOCs have been identified with high quality in strains of Ba10, Sa14, Ou80, Ou22, Sn48, and Ba35, respectively. All endophytic bacteria produced VOCs that significantly reduced crown gall symptoms and inhibited the populations of A. tumefaciens Gh1 at different levels. Moreover, scanning electron microscopy analysis revealed various morphological abnormalities in the A. tumefaciens cells exposed to the VOCs produced by Ba35, Ou80, and Sn48 strains. The VOCs significantly reduced swarming-, swimming-, twitching motility and biofilm formation by A. tumefaciens Gh1. Our results revealed that VOCs could reduce the attachment of A. tumefaciens Gh1 cells to root tissues of grapevine cultivars Rashe and Bidane sefid, as well as chemotaxis motility towards root extract of both cultivars. Based on our results, it was shown that the antibacterial VOCs produced by endophytic bacteria investigated in the current study can manage crown gall disease and increase our knowledge on the role of VOCs in microbial interactions. © 2022. The Author(s).

Citation

Faegheh Etminani, Behrouz Harighi, Ali Akbar Mozafari. Effect of volatile compounds produced by endophytic bacteria on virulence traits of grapevine crown gall pathogen, Agrobacterium tumefaciens. Scientific reports. 2022 Jun 22;12(1):10510

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35732688

View Full Text