Correlation Engine 2.0
Clear Search sequence regions


  • 2 5- dimethylfuran (3)
  • biomass (5)
  • furans (2)
  • lignin (1)
  • oxygen (4)
  • Sizes of these terms reflect their relevance to your search.

    The development of precious-metal-free catalysts to promote the sustainable production of fuels and chemicals from biomass remains an important and challenging target. Here, we report the efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran over a unique core-shell structured catalyst, Co@CoO that affords the highest productivity among all catalysts, including noble-metal-based catalysts, reported to date. Surprisingly, we find that the catalytically active sites reside on the shell of CoO with oxygen vacancies rather than the metallic Co. The combination of various spectroscopic experiments and computational modelling reveals that the CoO shell incorporating oxygen vacancies not only drives the heterolytic cleavage, but also the homolytic cleavage of H2 to yield more active Hδ- species, resulting in the exceptional catalytic activity. Co@CoO also exhibits excellent activity toward the direct hydrodeoxygenation of lignin model compounds. This study unlocks, for the first time, the potential of simple metal-oxide-based catalysts for the hydrodeoxygenation of renewable biomass to chemical feedstocks. © 2022. The Author(s).

    Citation

    Shuang Xiang, Lin Dong, Zhi-Qiang Wang, Xue Han, Luke L Daemen, Jiong Li, Yongqiang Cheng, Yong Guo, Xiaohui Liu, Yongfeng Hu, Anibal J Ramirez-Cuesta, Sihai Yang, Xue-Qing Gong, Yanqin Wang. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nature communications. 2022 Jun 27;13(1):3657

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35760807

    View Full Text