Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Salmonella enteritidis (SE) has been recognized as an important zoonotic pathogen, and the prevention and control of salmonellosis has long been a conundrum. However, glycoconjugate vaccines seem to be a promising solution. Glycoproteins are conventionally synthesized by chemical cross-linking which features complex procedure and cost-intensiveness. Therefore, a stable biosynthesis method at lower cost is in urgent need. For the biosynthesis of SE O-antigen-based glycoproteins, we used CRISPR/Cas9 to develop the waaL-deleted SE strain ∆waaL. The synthesis of lipopolysaccharide (LPS) was detected based on silver staining. Circular polymerase extension cloning (CPEC) was employed to construct the plasmids expressing glycosyltransferase PglL, recombinant Pseudomonas aeruginosa exotoxin A (rEPA), and cholera toxin B subunit (CTB). Meanwhile, PilES45-K73 glycosylation motif was added to the N-terminal and C-terminal of rEPA and CTB, respectively. The recombinant plasmids were transformed into SE ∆waaL. After induction, the synthesis of glycoprotein was verified by Western blotting and the synthesized glycoprotein was purified by Ni-NTA column. The results showed that waaL deletion blocked the LPS synthesis of SE, and that rEPA and CTB proteins were expressed in SE ∆waaL. In addition, obvious glycosylation occurred to rEPA and CTB when PglL was expressed, and the glycosylated part was SE O antigen polysaccharide. In summary, after waaL deletion in SE, PglL can transfer its own O antigen polysaccharides (OPS) to the carrier proteins rEPA and CTB, resulting in OPS-rEPA and OPS-CTB glycoproteins. The result lays a basis for the biosynthesis of SE glycoprotein.

Citation

Mengru Li, En Liu, Wenyu Zhang, Hongyan Luo, Pei Li. Biosynthesis of Salmonella enteritidis O antigen-based glycoproteins]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2022 Jun 25;38(6):2377-2388

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35786487

View Full Text