Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ontogeny and fate of stem cells have been extensively investigated by lineage-tracing approaches. At distinct anatomical sites, bone tissue harbors multiple types of skeletal stem cells, which may independently supply osteogenic cells in a site-specific manner. Periosteal stem cells (PSCs) and growth plate resting zone stem cells (RZSCs) critically contribute to intramembranous and endochondral bone formation, respectively. However, it remains unclear whether there is functional crosstalk between these two types of skeletal stem cells. Here we show PSCs are not only required for intramembranous bone formation, but also for the growth plate maintenance and prolonged longitudinal bone growth. Mice deficient in PSCs display progressive defects in intramembranous and endochondral bone formation, the latter of which is caused by a deficiency in PSC-derived Indian hedgehog (Ihh). PSC-specific deletion of Ihh impairs the maintenance of the RZSCs, leading to a severe defect in endochondral bone formation in postnatal life. Thus, crosstalk between periosteal and growth plate stem cells is essential for post-developmental skeletal growth. © 2022. The Author(s).

Citation

Masayuki Tsukasaki, Noriko Komatsu, Takako Negishi-Koga, Nam Cong-Nhat Huynh, Ryunosuke Muro, Yutaro Ando, Yuka Seki, Asuka Terashima, Warunee Pluemsakunthai, Takeshi Nitta, Takashi Nakamura, Tomoki Nakashima, Shinsuke Ohba, Haruhiko Akiyama, Kazuo Okamoto, Roland Baron, Hiroshi Takayanagi. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nature communications. 2022 Jul 18;13(1):4166

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35851381

View Full Text