Correlation Engine 2.0
Clear Search sequence regions


  • function (4)
  • organoid (1)
  • pathology (6)
  • point (5)
  • signal (2)
  • slide (1)
  • spread (4)
  • Sizes of these terms reflect their relevance to your search.

    The emergence and fast advance of digital pathology allows the acquisition, digital storage, interactive recall and analysis of morphology at the tissue level. When applying immunohistochemistry, it also affords the correlation of morphology with the expression of one or two specific molecule of interest. The rise of fluorescence pathology scanners expands the number of detected molecules based on multiplex labeling. The Pannoramic Confocal (created by 3DHistech, Hungary) is a first-of-the-kind digital pathology scanner that affords not only multiplexed fluorescent detection on top of conventional transmission imaging, but also confocality. We have benchmarked this scanner in terms of stability, precision, light efficiency, linearity and sensitivity. X-Y stability and relocalisation precision were well below resolution limit (≤50 nm). Light throughput in confocal mode was 4-5 times higher than that of a point scanning confocal microscope, yielding similar calculated confocal intensities but with the potential for improving signal to noise ratio or scan speed. Response was linear with R2  ≥ 0.9996. Calibrated measurements showed that using indirect labeling ≥2000 molecules per cell could be well detected and imaged on the cell surface. Both standard-based and statistical post-acquisition flatfield corrections are implemented. We have also measured the point spread function (PSF) of the instrument. The dimensions of the PSF are somewhat larger and less symmetric than of the theoretical PSF of a conventional CLSM, however, the spatial homogeneity of these parameters allows for obtaining a specific system PSF for each optical path and using it for optional on-the-fly deconvolution. In conclusion, the Pannoramic Confocal provides sensitive, quantitative widefield and confocal detection of multiplexed fluorescence signals, with optical sectioning and 3D reconstruction, in addition to brightfield transmission imaging. High speed scanning of large samples, analysis of tissue heterogeneity, and detection of rare events open up new ways for quantitatively analyzing tissue sections, organoid cultures or large numbers of adherent cells. © 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.

    Citation

    István Rebenku, Ferenc A Bartha, Tamás Katona, Barbara Zsebik, Géza Antalffy, Lili Takács, Béla Molnár, György Vereb. Taking molecular pathology to the next level: Whole slide multicolor confocal imaging with the Pannoramic Confocal digital pathology scanner. Cytometry. Part A : the journal of the International Society for Analytical Cytology. 2023 Mar;103(3):198-207

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35880846

    View Full Text