Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Platycodon grandiflorum is an edible and medicinal plant, and polysaccharides are one of its important components. To further improve the utilization rate of P. grandiflorum, we investigated the effects of four different extraction methods, including hot water, ultrasonic-assisted, acid-assisted, and alkali-assisted extractions, on the polysaccharides, which were named PG-H, PG-U, PG-C, and PG-A. The findings indicated that the extraction method had a significant impact on the yield, characteristics, and immunoregulatory activity. We observed that the yields decreased in the following order: PG-H, PG-U, PG-C, and PG-A. Galacturonic acid, glucose, galactose, and arabinose were the most prevalent monosaccharides in the four PGs. However, their proportions varied. In addition, the difference between the content of glucose and galacturonic acid was more significant. PG-U had the highest glucose content, whereas PG-C had the lowest. Galacturonic acid content was highest in PG-A, while the lowest in PG-U. The molecular weight decreased in the order of PG-U, PG-H, PG-C, and PG-A; the particle size was in the order of PG-U, PG-A, PG-H, and PG-C. Moreover, the extraction method had a great impact on immunoregulatory activity. The ability to stimulate the immune function of macrophages was as follows: PG-A > PG-C > PG-U > PG-H. The results indicated that PGs, with lower molecular weights and higher GalA content, exhibited better immune-stimulating activity. And more important the AAE method was a good way to extract polysaccharides from Platycodon grandiflorum for use as a functional product and immunological adjuvant.

Citation

Wanwan Xiao, Pingfan Zhou, Xiaoshuang Wang, Ruizhi Zhao, Yan Wang. Comparative Characterization and Immunomodulatory Activities of Polysaccharides Extracted from the Radix of Platycodon grandiflorum with Different Extraction Methods. Molecules (Basel, Switzerland). 2022 Jul 25;27(15)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35897935

View Full Text