Correlation Engine 2.0
Clear Search sequence regions


  • adult (1)
  • c57bl mice (1)
  • cytokines (1)
  • diet (1)
  • high iron- diet (2)
  • iron (1)
  • iron- overload (5)
  • mice (10)
  • n 5 (3)
  • oxide (3)
  • plasma (2)
  • profiles (3)
  • thalassemia (2)
  • Sizes of these terms reflect their relevance to your search.

    This study aimed to investigate the changes in gut microbiota in iron-overload thalassemia and the roles of an iron chelator on gut dysbiosis/inflammation, and metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO). Adult male C57BL/6 mice both wild-type (WT: n = 15) and heterozygous β-thalassemia (BKO: n = 15) were fed on either a normal (ND: n = 5/group) or a high‑iron diet for four months (HFe: n = 10/group). HFe-treated WT and HFe-treated BKO groups were further subdivided into two subgroups and each subgroup given either vehicle (n = 5/subgroup) or deferiprone (n = 5/subgroup) during the last month. Gut microbiota profiles, gut barrier characteristics, levels of proinflammatory cytokines, and plasma SCFAs and TMAO were determined at the end of the study. HFe-fed WT mice showed distinct gut microbiota profiles from those of ND-fed WT mice, whereas HFe-fed BKO mice showed slightly different gut microbiota profiles from ND-fed BKO. Gut inflammation and barrier disruption were found only in HFe-fed BKO mice, however, an increase in plasma TMAO levels and decreased levels of SCFAs were observed in both WT and BKO mice with HFe-feeding. Treatment with deferiprone, gut dysbiosis and disturbance of metabolites were attenuated in HFe-fed WT mice, but not in HFe-fed BKO mice. Increased Verrucomicrobia and Ruminococcaceae were associated with the beneficial effects of deferiprone. Iron-overload leads to gut dysbiosis/inflammation and disturbance of metabolites, and deferiprone alleviates those conditions more effectively in WT than in those that are thalassemic. Copyright © 2022 Elsevier Inc. All rights reserved.

    Citation

    Sirawit Sriwichaiin, Parameth Thiennimitr, Chanisa Thonusin, Phinitphong Sarichai, Songphon Buddhasiri, Sirinart Kumfu, Wichwara Nawara, Weerayuth Kittichotirat, Suthat Fucharoen, Nipon Chattipakorn, Siriporn C Chattipakorn. Deferiprone has less benefits on gut microbiota and metabolites in high iron-diet induced iron overload thalassemic mice than in iron overload wild-type mice: A preclinical study. Life sciences. 2022 Aug 08;307:120871


    PMID: 35952729

    View Full Text