Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods. Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

Citation

Kyung-Min Kwon, Jae-Hong Pak, Chang-Jin Jeon. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta histochemica. 2022 Aug 10;124(7):151941


PMID: 35963117

View Full Text