Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pegylated-interferon-alpha (Peg-IFNα), an injectable innate immune protein, is still used to treat chronically HBV-infected patients, despite its poor tolerability. Peg-IFNα has the advantage over nucleos(t)ide analogues (NAs) to be administrated in finite regimen and to lead to a higher HBsAg loss rate. Yet it would be interesting to improve the efficacy (i.e. while decreasing doses), or replace, this old medicine by novel small molecules/stimulators able to engage innate immune receptors in both HBV replicating hepatocytes and relevant innate immune cells. We have previously identified the Toll-Like-Receptor (TLR)-2 agonist Pam3CSK4 as such a potential novel immune stimulator. The aim of this study was to gain insights on the antiviral mechanisms of action of this agonist in in vitro cultivated human hepatocytes. We used in vitro models of HBV-infected cells, based on both primary human hepatocytes (PHH) and the non-transformed HepaRG cell line to investigate the MoA of Pam3SCK4 and identify relevant combinations with other approved or investigational drugs. We exhaustively described the inhibitory anti-HBV phenotypes induced by Pam3CSK4, which include a strong decrease in HBV RNA production (inhibition of synthesis and acceleration of decay) and cccDNA levels. We confirmed the long-lasting anti-HBV activity of this agonist, better described the kinetics of antiviral events, and demonstrated the specificity of action through the TLR1/2- NF-κB canonical-pathway. Moreover, we found that FEN-1 could be involved in the regulation and inhibitory phenotype on cccDNA levels. Finally, we identified the combination of Pam3CSK4 with IFNα or an investigational kinase inhibitor (called 1C8) as valuable strategies to reduce cccDNA levels and obtain a long-lasting anti-HBV effect in vitro. TLR2 agonists represent possible assets to improve the rate of HBV cure in patients. Further evaluations, including regulatory toxicity studies, are warranted to move toward clinical trials. Copyright © 2022. Published by Elsevier B.V.

Citation

Manon Desmares, Marion Delphin, Brieux Chardès, Caroline Pons, Juliette Riedinger, Maud Michelet, Michel Rivoire, Bernard Verrier, Anna Salvetti, Julie Lucifora, David Durantel. Insights on the antiviral mechanisms of action of the TLR1/2 agonist Pam3CSK4 in hepatitis B virus (HBV)-infected hepatocytes. Antiviral research. 2022 Oct;206:105386

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35963549

View Full Text