Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Most cells can sense and change their shape to carry out fundamental cell processes. In many eukaryotes, the septin cytoskeleton is an integral component in coordinating shape changes like cytokinesis, polarized growth, and migration. Septins are filament-forming proteins that assemble to form diverse higher-order structures and, in many cases, are found in different areas of the plasma membrane, most notably in regions of micron-scale positive curvature. Monitoring the process of septin assembly in vivo is hindered by the limitations of light microscopy in cells, as well as the complexity of interactions with both membranes and cytoskeletal elements, making it difficult to quantify septin dynamics in living systems. Fortunately, there has been substantial progress in the past decade in reconstituting the septin cytoskeleton in a cell-free system to dissect the mechanisms controlling septin assembly at high spatial and temporal resolutions. The core steps of septin assembly include septin heterooligomer association and dissociation with the membrane, polymerization into filaments, and the formation of higher-order structures through interactions between filaments. Here, we present three methods to observe septin assembly in different contexts: planar bilayers, spherical supports, and rod supports. These methods can be used to determine the biophysical parameters of septins at different stages of assembly: as single octamers binding the membrane, as filaments, and as assemblies of filaments. We use these parameters paired with measurements of curvature sampling and preferential adsorption to understand how curvature sensing operates at a variety of length and time scales.


Brandy N Curtis, Ellysa J D Vogt, Kevin S Cannon, Amy S Gladfelter. Reconstitution of Septin Assembly at Membranes to Study Biophysical Properties and Functions. Journal of visualized experiments : JoVE. 2022 Jul 28(185)

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35969099

View Full Text