Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We explored the potential of two sodium channel activators, veratrine and aconitine, as both insecticides and synergists of natural pyrethrins (NP) on Aedes aegypti adults and larvae. Aconitine was more toxic than veratrine, with an LD50 of 157 ng/mg compared to 376 ng/mg, on the pyrethroid-susceptible Orlando strain, but only aconitine showed significant resistance in the pyrethroid-resistant Puerto Rico strain (RR = 14.6 in topical application and 8.8 in larval bioassay). When applied in mixtures with piperonyl butoxide (PBO) and NP, large synergism values were obtained on the Orlando strain. Aconitine + PBO mixture synergized NP 21.8-fold via topical adult application and 10.2-fold in larval bioassays, whereas veratrine + PBO synergized NP 5.3-fold via topical application and 30.5-fold in larval bioassays. Less synergism of NP was observed on the resistant Puerto Rico strain, with acontine + PBO synergizing NP only 4.1-fold in topical application (8-fold in larval bioassays) and veratrine + PBO synergizing NP 9.5-fold in topical application (13.3-fold in larval bioassays). When alkaloids were applied directly to the mosquito larval nervous system, veratrine was nearly equipotent on both strains, while aconitine was less active on pyrethroid-resistant nerve preparations (no block at 10 μM compared to block at 1 μM on the susceptible strain). The nerve blocking effect of NP was significantly synergized by both compounds on the pyrethroid-susceptible strain by about 10-fold, however only veratrine synergized NP block on the pyrethroid-resistant strain, also showing 10-fold synergism). These results highlight the potential of site II sodium channel activators as insecticides and their ability to synergize pyrethroids, which may extend the commercial lifetime of these chemistries so essential to public health vector control. Published by Elsevier Inc.

Citation

Edmund J Norris, Jeffrey R Bloomquist. Sodium channel-directed alkaloids synergize the mosquitocidal and neurophysiological effects of natural pyrethrins. Pesticide biochemistry and physiology. 2022 Aug;186:105171

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35973763

View Full Text