Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications. © 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Citation

Minglu Yan, Noriko Komatsu, Ryunosuke Muro, Nam Cong-Nhat Huynh, Yoshihiko Tomofuji, Yukinori Okada, Hiroshi I Suzuki, Hiroyuki Takaba, Riko Kitazawa, Sohei Kitazawa, Warunee Pluemsakunthai, Yuichi Mitsui, Takashi Satoh, Tadashi Okamura, Takeshi Nitta, Sin-Hyeog Im, Chan Johng Kim, George Kollias, Sakae Tanaka, Kazuo Okamoto, Masayuki Tsukasaki, Hiroshi Takayanagi. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nature immunology. 2022 Sep;23(9):1330-1341

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35999392

View Full Text