Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications. © 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Citation

Minglu Yan, Noriko Komatsu, Ryunosuke Muro, Nam Cong-Nhat Huynh, Yoshihiko Tomofuji, Yukinori Okada, Hiroshi I Suzuki, Hiroyuki Takaba, Riko Kitazawa, Sohei Kitazawa, Warunee Pluemsakunthai, Yuichi Mitsui, Takashi Satoh, Tadashi Okamura, Takeshi Nitta, Sin-Hyeog Im, Chan Johng Kim, George Kollias, Sakae Tanaka, Kazuo Okamoto, Masayuki Tsukasaki, Hiroshi Takayanagi. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nature immunology. 2022 Sep;23(9):1330-1341

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35999392

View Full Text