Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma (LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1 was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfactory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, invasion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmed that ACAP1 was highly correlated with T cell activation and immune response. Then, we further conducted immune landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune checkpoints. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy response for LUAD patients. © 2022 The Author(s).

Citation

Ning Wang, Lingye Zhu, Xiaomei Xu, Chang Yu, Xiaoying Huang. Integrated analysis and validation reveal ACAP1 as a novel prognostic biomarker associated with tumor immunity in lung adenocarcinoma. Computational and structural biotechnology journal. 2022;20:4390-4401


PMID: 36051873

View Full Text