Correlation Engine 2.0
Clear Search sequence regions

  • account (2)
  • aquaporin 1 (1)
  • aquaporins (1)
  • aquaporins (1)
  • axial (6)
  • behavior (17)
  • carbon (8)
  • carbon nanotubes (103)
  • charge (1)
  • flow (33)
  • function (3)
  • hydrogen bonds (16)
  • layer (7)
  • ns 1 (6)
  • oxygen (15)
  • p l (2)
  • parallel (2)
  • past (1)
  • pink (1)
  • probability (4)
  • process (3)
  • scale (1)
  • transport ions (1)
  • transport membranes (1)
  • v e (2)
  • water pass (2)
  • water transport (12)
  • weak (1)
  • Sizes of these terms reflect their relevance to your search.

    Carbon nanotubes (CNTs) mimicking the structure of aquaporins support fast water transport, making them strong candidates for building next-generation high-performance membranes for water treatment. The diffusion and transport behavior of water through CNTs or nanoporous graphene can be fundamentally different from those of bulk water through a macroscopic tube. To date, the nanotube-length-dependent physical transport behavior of water is still largely unexplored. Herein, on the basis of molecular dynamics simulations, we show that the flow rate of water through 0.83-nm-diameter (6,6) and 0.96-nm-diameter (7,7) CNTs exhibits anomalous transport behavior, whereby the flow rate increases markedly first and then either slowly decreases or changes slightly as the CNT length l increases. The critical range of l for the flow-rate transition is 0.37 to 0.5 nm. This anomalous water transport behavior is attributed to the l-dependent mechanical stability of the transient hydrogen-bonding chain that connects water molecules inside and outside the CNTs and bypasses the CNT orifice. The results unveil a microscopic mechanism governing water transport through subnanometer tubes, which has important implications for nanofluidic manipulation.


    Zhengyi Wan, Yurui Gao, Xiangyu Chen, Xiao Cheng Zeng, Joseph S Francisco, Chongqin Zhu. Anomalous water transport in narrow-diameter carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America. 2022 Sep 19;119(39):e2211348119

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 36122221

    View Full Text