Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.

Citation

Vikas Arige, Lara E Terry, Larry E Wagner, Sundeep Malik, Mariah R Baker, Guizhen Fan, Suresh K Joseph, Irina I Serysheva, David I Yule. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proceedings of the National Academy of Sciences of the United States of America. 2022 Sep 27;119(39):e2209267119

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36122240

View Full Text