Lectins, discovered more than 100 years ago and defined by their ability to selectively recognize specific carbohydrate structures, are ubiquitous in living organisms. Their precise functions are as yet under-explored and incompletely understood but they are clearly involved, through recognition of their binding partners, in a myriad of biological mechanisms involved in cell identity, adhesion, signaling, and growth regulation in health and disease. Understanding the complex "sugar code" represented by the "glycome" is a major challenge and at the forefront of current biological research. Lectins have been widely employed in histochemical studies to map glycosylation in cells and tissues. Here, a brief history of the discovery of lectins and early developments in their use is presented along with a selection of some of the most interesting and significant discoveries to emerge from the use of lectin histochemistry. Further, an evaluation of the next generation of lectin-based technologies is presented, including the potential for designing recombinant lectins with more precisely defined binding characteristics, linking lectin-based studies with other technologies to answer fundamental questions in glycobiology and approaches to exploring the interactions of lectins with their binding partners in more detail. © 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Susan Ann Brooks. Lectin Histochemistry: Historical Perspectives, State of the Art, and Future Directions. Methods in molecular biology (Clifton, N.J.). 2023;2566:65-84
PMID: 36152243
View Full Text