Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The worldwide steady increase in the number of cancer patients motivates the development of innovative drug delivery systems for combination therapy as an effective clinical modality for cancer treatment. Here, we explored a design concept based on poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(2-hydroxyethyl methacrylate-formylbenzoic acid) [PEG-b-PDMAEMA-b-P(HEMA-FBA)] for the dual delivery of doxorubicin (DOX) and GTI2040 (an antisense oligonucleotide for ribonucleotide reductase inhibition) to MCF-7 breast cancer cells. PEG-b-PDMAEMA-b-PHEMA, the precursor copolymer, was prepared through chain extensions from a PEG-based macroinitiator via two consecutive atom transfer radical polymerization (ATRP) steps. Then, it was modified at the PHEMA block with 4-formylbenzoic acid (FBA) to install reactive aldehyde moieties. A pH-responsive polymer-drug conjugate (PDC) was obtained by conjugating DOX to the polymer structure via acid-labile imine linkages, and subsequently self-assembled in an aqueous solution to form DOX-loaded self-assembled nanoparticles (DOX-SAN) with a positively charged shell. DOX-SAN condensed readily with negatively charged GTI2040 to form GTI2040/DOX-SAN nanocomplexes. Gel-retardation assay confirmed the affinity between GTI2040 and DOX-SAN. The GTI2040/DOX-SAN nanocomplex at N/P ratio of 30 exhibited a volume-average hydrodynamic size of 136.4 nm and a zeta potential of 21.0 mV. The pH-sensitivity of DOX-SAN was confirmed by the DOX release study based on the significant cumulative DOX release at pH 5.5 relative to pH 7.4. Cellular uptake study demonstrated favorable accumulation of GTI2040/DOX-SAN inside MCF-7 cells compared with free GTI2040/DOX. In vitro cytotoxicity study indicated higher therapeutic efficacy of GTI2040/DOX-SAN relative to DOX-SAN alone because of the downregulation of the R2 protein of ribonucleotide reductase. These outcomes suggest that the self-assembled pH-responsive triblock copolymer is a promising platform for combination therapy, which may be more effective in combating cancer than individual therapies.

Citation

Mohamed Alaa Mohamed, Lingyue Yan, Aref Shahini, Nika Rajabian, Amin Jafari, Stelios T Andreadis, Yun Wu, Chong Cheng. Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells. ACS applied bio materials. 2022 Oct 17;5(10):4779-4792

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36170623

View Full Text