Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

U6 small nuclear (sn)RNA is the shortest and most conserved snRNA in the spliceosome and forms a substantial portion of its active site. Unlike the other four spliceosomal snRNAs, which are synthesized by RNA polymerase (RNAP) II, U6 is made by RNAP III. To determine if some aspect of U6 function is incompatible with synthesis by RNAP II, we created a U6 snRNA gene with RNAP II promoter and terminator sequences. This "U6-II" gene is functional as the sole source of U6 snRNA in yeast, but its transcript is much less stable than U6 snRNA made by RNAP III. Addition of the U4 snRNA Sm protein binding site to U6-II increased its stability and led to formation of U6-II•Sm complexes. We conclude that synthesis of U6 snRNA by RNAP III is not required for its function and that U6 snRNPs containing the Sm complex can form in vivo. The ability to synthesize U6 snRNA with RNAP II relaxes sequence restraints imposed by intragenic RNAP III promoter and terminator elements and allows facile control of U6 levels via regulators of RNAP II transcription. © 2022 Lipinski et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

Citation

Karli A Lipinski, Jing Chi, Xin Chen, Aaron A Hoskins, David A Brow. Yeast U6 snRNA made by RNA polymerase II is less stable but functional. RNA (New York, N.Y.). 2022 Dec;28(12):1606-1620

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36195346

View Full Text