Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Integrin activation is a predominant step for cell-cell and cell-ECM interactions. Talin and Kindlin are mechanosensitive adaptor proteins that bind to the integrin cytoplasmic tail and mediate integrin activation, cytoskeleton rearrangement, and focal adhesion assembly. However, knowledge about how Talin and Kindlin synergistically assist integrin activation remains unclear. Here, we performed so-called "ramp-clamp" SMD simulations, which modeled the mechanosignaling from Kindlin, to investigate the effect of tension on the interaction of the β1 integrin cytoplasmic tail with the Talin-F3 domain. The present results showed that mild but not excessive stretching enhanced the binding of integrin with Talin. This mechanical regulation on integrin affinity to Talin referred to an event cascade, in which under stretching, the integrin cytoplasmic tail adopted allostery in response to the mechanical stimulus, remodeling of integrin in favor of Talin-association ensued, and finally, a stable, close-knit complex was formed. In the cascade, the torsion angle transition of integrin was the cue for the stable interaction of the complex under tensile force. The present work suggested a model for Talin and Kindlin to synergistically activate integrin. It should help understand integrin activation and its mechanochemical regulation mechanism, integrin-related innate cellular immune responses, cell adhesion, cell-cell interaction, and integrin-related drug development.

Citation

Yanru Ji, Ying Fang, Jianhua Wu. Tension Enhances the Binding Affinity of β1 Integrin by Clamping Talin Tightly: An Insight from Steered Molecular Dynamics Simulations. Journal of chemical information and modeling. 2022 Nov 28;62(22):5688-5698

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36269690

View Full Text