Correlation Engine 2.0
Clear Search sequence regions


  • fourier transform (1)
  • gold (2)
  • layer (1)
  • michelia (6)
  • reaction time (1)
  • seed (2)
  • Sizes of these terms reflect their relevance to your search.

    In this study, gold nanoparticles (AuNPs) were synthesized via a green and environmentally-friendly approach and applied as a colorimetric probe for detecting Pb2+ ions in aqueous solution. Instead of toxic chemicals, Michelia tonkinensis (MT) seed extract was used for reducing Au3+ and stabilizing the formed AuNPs. The synthesis conditions, including temperature, reaction time, and Au3+ ion concentration, were optimized at 90 °C, 40 min, and 1.25 mM, respectively. The physicochemical properties of the produced MT-AuNPs were assessed by means of transmission electron microscopy, X-ray diffraction, field emission scanning electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. The characterization results revealed that the MT-AuNPs exhibited a spherical shape with a size of about 15 nm capped by an organic layer. The colorimetric assay based on MT-AuNPs showed excellent sensitivity and selectivity toward Pb2+ ions with the limit of detection value of 0.03 μM and the limit of quantification of 0.09 μM in the linear range of 50-500 μM. The recoveries of inter-day and intra-day tests were 97.84-102.08% and 98.78-102.34%, respectively. The MT-AuNPs probe also demonstrated good and reproducible recoveries (98.71-101.01%) in analyzing Pb2+ in drinking water samples, indicating satisfactory practicability and operability of the proposed method. This journal is © The Royal Society of Chemistry.

    Citation

    Bao An Huynh, Van-Dat Doan, Van Cuong Nguyen, Anh-Tien Nguyen, Van Thuan Le. Highly sensitive and selective colorimetric detection of Pb(ii) ions using Michelia tonkinensis seed extract capped gold nanoparticles. RSC advances. 2022 Sep 22;12(42):27116-27124


    PMID: 36276021

    View Full Text