Correlation Engine 2.0
Clear Search sequence regions


  • alleles (1)
  • amino acid (1)
  • dna sequences (1)
  • gene (1)
  • genomes (2)
  • gonorrhoea (2)
  • gyrA (2)
  • GyrB (13)
  • humans (1)
  • japan (1)
  • neisseria (2)
  • phase (1)
  • Sizes of these terms reflect their relevance to your search.

    Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global threat and novel treatment alternatives are imperative. Herein, susceptibility to the novel antimicrobial zoliflodacin, currently in a global Phase 3 randomized controlled clinical trial for gonorrhoea treatment, was investigated by screening for zoliflodacin GyrB target mutations in publicly available gonococcal genomes and, where feasible, determination of the associated zoliflodacin MIC. The European Nucleotide Archive was queried using the search term 'Taxon: 485'. DNA sequences from 27 151 gonococcal isolates were analysed and gyrB, gyrA, parC and parE alleles characterized. GyrB amino acid alterations were rare (97.0% of isolates had a wild-type GyrB sequence). GyrB V470L (2.7% of isolates) was the most prevalent alteration, followed by S467N (0.12%), N. meningitidis GyrB (0.092%), V470I (0.059%), Q468R/P (0.015%), A466T (0.0074%), L425I + L465I (0.0037%), L465I (0.0037%), G482S (0.0037%) and D429V (0.0037%). Only one isolate (0.0037%) carried a substitution in a resistance-associated GyrB codon (D429V), resulting in a zoliflodacin MIC of 8 mg/L. None of the other detected gyrB, gyrA, parC or parE mutations caused a zoliflodacin MIC outside the wild-type MIC distribution. The zoliflodacin target GyrB was highly conserved among 27 151 global gonococcal isolates cultured in 1928-2021. The single zoliflodacin-resistant clinical isolate (0.0037%) was cultured from a male patient in Japan in 2000. Evidently, this strain has not clonally expanded nor has the gyrB zoliflodacin-resistance mutation disseminated through horizontal gene transfer to other strains. Phenotypic and genomic surveillance, including gyrB mutations, of zoliflodacin susceptibility are imperative. © The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

    Citation

    Daniel Golparian, Susanne Jacobsson, Leonor Sánchez-Busó, Maria Luiza Bazzo, Pham Thi Lan, Patricia Galarza, Makoto Ohnishi, Magnus Unemo. GyrB in silico mining in 27 151 global gonococcal genomes from 1928-2021 combined with zoliflodacin in vitro testing of 71 international gonococcal isolates with different GyrB, ParC and ParE substitutions confirms high susceptibility. The Journal of antimicrobial chemotherapy. 2022 Dec 23;78(1):150-154

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 36308328

    View Full Text