The fixed-dose combination drug products have been increasingly used to treat some complex diseases. A cocrystal containing two therapeutic components, named as a drug-drug cocrystal, is an ideal solid form to formulate as a fixed-dose combination product. The aim of the study is to prepare celecoxib-carbamazepine (CEL-CBZ) cocrystals by melt crystallization to achieve the synchronized release of drugs. The crystal structure of the CEL-CBZ cocrystal was determined from the cocrystals harvested from melt by single crystal X-ray diffraction. The binary phase diagram and crystal growth kinetics of the CEL-CBZ cocrystal from melt were studied to optimize the process parameters of hot-melt extrusion for manufacturing large-scale cocrystals. The intrinsic dissolution rate studies were conducted to compare the dissolution profiles of drugs in the cocrystal and their individual forms. The CEL-CBZ cocrystal crystallized in the triclinic space group with one CEL and one CBZ molecule in the asymmetric unit. The crystallization of CEL-CBZ cocrystals were observed both in the supercooled liquid and glassy state. The formation of drug-drug cocrystals significantly alter the intrinsic dissolution rates of the parent drugs to favor the synchronized release. Melt crystallization is an alternative, efficient and eco-friendly approach for preparing drug-drug cocrystals on a large scale. The synchronized drug release by drug-drug cocrystals can be used to modulate the release profiles of parent drugs in the fixed-dose combination products. © 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
An Chen, Peishan Cai, Minqian Luo, Minshan Guo, Ting Cai. Melt Crystallization of Celecoxib-Carbamazepine Cocrystals with the Synchronized Release of Drugs. Pharmaceutical research. 2023 Feb;40(2):567-577
PMID: 36348133
View Full Text