Correlation Engine 2.0
Clear Search sequence regions


  • antigen (1)
  • BA 1 (1)
  • ba 2 (1)
  • health resources (1)
  • human (2)
  • hybrid (1)
  • nevada (3)
  • plant (1)
  • public health (2)
  • sars cov (6)
  • Sizes of these terms reflect their relevance to your search.

    The identification of novel SARS-CoV-2 variants can predict new patterns of COVID-19 community transmission and lead to the deployment of public health resources. However, increased access to at-home antigen tests and reduced free PCR tests have recently led to data gaps for the surveillance of evolving SARS-CoV-2 variants. To overcome such limitations, we asked whether wastewater surveillance could be leveraged to detect rare variants circulating in a community before local detection in human cases. Here, we performed whole genome sequencing (WGS) of SARS-CoV-2 from a wastewater treatment plant serving Las Vegas, Nevada in April 2022. Using metrics that exceeded 100× depth at a coverage of >90 % of the viral genome, we identified a variant profile similar to the XL recombinant lineage containing 26 mutations found in BA.1 and BA.2 and three private mutations. Prompted by the discovery of this rare lineage in wastewater, we analyzed clinical COVID-19 sequencing data from Southern Nevada and identified two cases infected with the XL lineage. Taken together, our data highlight how wastewater genome sequencing data can be used to discover rare SARS-CoV-2 lineages in a community and complement local public health surveillance. Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

    Citation

    Van Vo, Anthony Harrington, Salman Afzal, Katerina Papp, Ching-Lan Chang, Hayley Baker, Perseveranda Aguilar, Erin Buttery, Michael A Picker, Cassius Lockett, Daniel Gerrity, Horng-Yuan Kan, Edwin C Oh. Identification of a rare SARS-CoV-2 XL hybrid variant in wastewater and the subsequent discovery of two infected individuals in Nevada. The Science of the total environment. 2023 Feb 01;858(Pt 3):160024

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 36356728

    View Full Text