Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Losses and malformations of cranial neural crest cell (cNCC) derivatives are a hallmark of several common brain and face malformations. Nevertheless, the etiology of these cNCC defects remains unknown for many cases, suggesting a complex basis involving interactions between genetic and/or environmental factors. However, the sheer number of possible factors (thousands of genes and hundreds of thousands of toxicants) has hindered identification of specific interactions. Here, we develop a high-throughput analysis that will enable faster identification of multifactorial interactions in the genesis of craniofacial defects. Zebrafish embryos expressing a fluorescent marker of cNCCs (fli1:EGFP) were exposed to a pathway inhibitor standard or environmental toxicant, and resulting changes in fluorescence were measured in high-throughput using a fluorescent microplate reader to approximate cNCC losses. Embryos exposed to the environmental Hedgehog pathway inhibitor piperonyl butoxide (PBO), a Hedgehog pathway inhibitor standard, or alcohol (ethanol) exhibited reduced fli1:EGFP fluorescence at one day post fertilization, which corresponded with craniofacial defects at five days post fertilization. Combining PBO and alcohol in a co-exposure paradigm synergistically reduced fluorescence, demonstrating a multifactorial interaction. Using pathway reporter transgenics, we show that the plate reader assay is sensitive at detecting alterations in Hedgehog signaling, a critical regulator of craniofacial development. We go on to demonstrate that this technique readily detects defects in other important cell types, namely neurons. Together, these findings demonstrate this novel in vivo platform can predict developmental abnormalities and multifactorial interactions in high-throughput. © 2022 The Authors. Birth Defects Research published by Wiley Periodicals LLC.

Citation

Joshua L Everson, Yung-Chia Tseng, Johann K Eberhart. High-throughput detection of craniofacial defects in fluorescent zebrafish. Birth defects research. 2023 Feb 01;115(3):371-389

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36369674

View Full Text