Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with characteristic features, such as overgrowth, macroglossia, and exomphalos. Hypomethylation of the KCNQ1OT1:TSS-differentially methylated region (DMR) on the 11p15.5 imprinted region is the most common etiology of BWS. KCNQ1 on 11p15.5 is expressed from the maternally inherited allele in most tissues, but is biparentally expressed in the heart, and maternal KCNQ1 transcription is required to establish the maternal DNA imprint in the KCNQ1OT1:TSS-DMR. Loss of function variants in KCNQ1 result in long QT syndrome type 1 (LQT1). To date, eight patients with BWS due to KCNQ1 splice variants or structural abnormalities involving KCNQ1 but not the KCNQ1OT1:TSS-DMR have been reported (KCNQ1-BWS), and four of them had LQT1. We report a Japanese boy with BWS and LQT1 presenting with extreme hypomethylation of the KCNQ1OT1:TSS-DMR caused by a de novo 215-kb deletion including KCNQ1 but not the KCNQ1OT1:TSS-DMR on the maternal allele. He was born by emergency cesarean section due to suspicion of placental abruption at 30 weeks of gestation. His birth weight and length were +1.6 SD and +1.0 SD, respectively. His placental weight was +3.9 SD, and histological examination of his placenta was consistent with mesenchymal dysplasia. He had BWS clinical features, including macroglossia, ear creases and pits, body asymmetry, and rectus abdominis muscle dehiscence, and BWS was therefore diagnosed. LQT1 was first noticed at three months in a preoperative examination for lingual frenectomy. The summarized data of our patient and the previously reported eight patients in KCNQ1-BWS showed more frequent and earlier preterm births and smaller sized birth weight in KCNQ1-BWS cases than those with BWS caused by epimutation of the KCNQ1OT1:TSS-DMR. In addition, in five of nine patients with KCNQ1-BWS, LQT1 was detected, and two of them were identified at school age. In our patient and in another single case with LQT1, the LQT1 was not detected early despite neonatal ECG monitoring. For BWS patients with extreme hypomethylation of the KCNQ1OT1:TSS-DMR, searching for CNVs involving KCNQ1 and mutation screening for KCNQ1 should be considered together with periodic ECG monitoring. (338/500 words). Copyright © 2022 Elsevier Masson SAS. All rights reserved.

Citation

Tatsuki Urakawa, Junichi Ozawa, Masato Tanaka, Hiromune Narusawa, Kentaro Matsuoka, Maki Fukami, Keisuke Nagasaki, Masayo Kagami. Beckwith-Wiedemann syndrome with long QT caused by a deletion involving KCNQ1 but not KCNQ1OT1:TSS-DMR. European journal of medical genetics. 2023 Jan;66(1):104671

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36402267

View Full Text