Correlation Engine 2.0
Clear Search sequence regions

As growing evidence implicates extrarenal mineralocorticoid receptor (MR) in cardiovascular disease (CVD), recent studies have defined both cell- and sex-specific roles. MR is expressed in vascular smooth muscle (SMC) and endothelial cells (ECs). This review integrates published data from the past 5 years to identify novel roles for vascular MR in CVD, with a focus on understanding sex differences. Four areas are reviewed in which there is recently expanded understanding of the cell type- or sex-specific role of MR in 1) obesity-induced microvascular endothelial dysfunction, 2) vascular inflammation in atherosclerosis, 3) pulmonary hypertension, and 4) chronic kidney disease (CKD)-related CVD. The review focuses on preclinical data on each topic describing new mechanistic paradigms, cell type-specific mechanisms, sexual dimorphism if addressed, and clinical implications are then considered. New data support that MR drives vascular dysfunction induced by cardiovascular risk factors via sexually dimorphic mechanisms. In females, EC-MR contributes to obesity-induced endothelial dysfunction by regulating epithelial sodium channel expression and by inhibiting estrogen-induced nitric oxide production. In males with hyperlipidemia, EC-MR promotes large vessel inflammation by genomic regulation of leukocyte adhesion molecules, which is inhibited by the estrogen receptor. In pulmonary hypertension models, MRs in EC and SMC contribute to distinct components of disease pathologies including pulmonary vessel remodeling and RV dysfunction. Despite a female predominance in pulmonary hypertension, sex-specific roles for MR have not been explored. Vascular MR has also been directly implicated in CKD-related vascular dysfunction, independent of blood pressure. Despite these advances, sex differences in MR function remain understudied.


Nicole L Wolter, Iris Z Jaffe. Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease. American journal of physiology. Cell physiology. 2023 Jan 01;324(1):C193-C204

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 36440858

View Full Text