Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Nanoparticles possess the ability to adsorb and load other compounds. This study aimed to synthesize a gene carrier with polyethyleneimine (PEI), hyaluronic acid (HA) and mesoporous silica nanoparticles (MSNs) for circ_0086375 delivery to investigate the role and mechanism of circ_0086375 in pancreatic cancer (PC) progression. The expression of genes and proteins was detected by quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were performed by cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay, and wound healing assay, respectively. Dual-luciferase activity assay was used to investigate the target relationship between miR-646 and circ_0086375 or SLC4A4 (solute carrier family 4 member 4). Circ_0086375 loaded PEI/HA-based mesoporous silica nanoparticles (MSNs) were prepared, and in vivo assay was performed by using xenograft tumor model. Circ_0086375 expression was decreased in PC tissues and cells. Restoration of circ_0086375 suppressed PC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, circ_0086375 acted as a sponge for miR-646 to elevate SLC4A4 expression, which was confirmed to be a target of miR-646. The prepared circ_0086375/MSN/PEI/HA nanocomplexes showed excellent fluorescent properties and a higher cellular uptake of circ_0086375 in PC cells. Moreover, circ_0086375/MSN/PEI/HA showed relatively more anticancer effects in PC than that of circ_0086375 alone in vitro and in vivo. Delivery of circ_0086375 by nanoparticles suppresses the tumorigenicity of pancreatic cancer by miR-646/SLC4A4 axis, suggesting a new potential target for future pancreatic cancer treatment. © 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Citation

Yunjian Wang, Min Zhang, Luyang Zhang, Minghe Zhou, Enze Wang. Nanoparticles loaded with circ_0086375 for suppressing the tumorigenesis of pancreatic cancer by targeting the miR-646/SLC4A4 axis. Clinical & experimental metastasis. 2023 Feb;40(1):53-67

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36479657

View Full Text