Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Valinomycin (VM) is a natural K+-selective ionophore that transports K+ through the cell membrane. VM captures K+ in its central cavity with a C3-symmetric β-turn-like backbone. Although the binding affinity is drastically decreased for the VM-sodium (Na+VM) complex with respect to K+VM, VM holds relatively high affinity to Rb+ and Cs+. The high affinity for larger ions irrespective of ionic size seems to conflict with the expected optimal size matching model and raises questions on what factors determine ion selectivity. A combination of infrared spectroscopy with supporting computational calculations reveals that VM can accommodate larger Rb+ and Cs+ by flexibly changing its cavity size with the elongation of its folded β-turn-like backbone. The high affinity to Rb+ and Cs+ can be ascribed to a size-dependent cavity expansion. These findings provide a new perspective on molecular recognition and selectivity beyond the conventional size matching model.

Citation

Keisuke Hirata, Eiko Sato, James M Lisy, Shun-Ichi Ishiuchi, Masaaki Fujii. Cation-responsive cavity expansion of valinomycin revealed by cryogenic ion trap infrared spectroscopy. Physical chemistry chemical physics : PCCP. 2023 Jan 04;25(2):1075-1080

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36519454

View Full Text