Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The oil/water separation has received significant attention due to its critical environmental impact. The special wettable surfaces are highly desired to deal with the oil/water mixtures. This work demonstrates a simple two-step method to develop a superhydrophobic Azadirachta indica leaves like Ag-decorated electrochemically copper-coated stainless-steel mesh (SH-AIL-Ag-EC-Cu-Mesh) for efficient separation of oil/water mixtures. In the first step, the electrodeposition of the copper took place on the mesh surface at a suitable applied potential. In the second step, the galvanic replacement reaction between the Ag+ and electrodeposited Cu produced the fascinating superhydrophobic Ag leaves on the mesh surface. The SH-AIL-Ag-EC-Cu-Mesh was thoroughly characterized by the X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDX), elemental mapping, surface wettability analysis, and the contact analyzer. The morphological analysis has shown the unique leafy structures of the reduced Ag on the surface of the mesh. The XPS analysis has confirmed that most of the Ag present on the surface is in zerovalent form. The combination of the electrodeposition and the displacement reaction between the copper and the silver turned the surface superhydrophobic, and the water contact angle was significantly improved from 115° to 158°. The designed SH-AIL-Ag-EC-Cu-Mesh has shown excellent selectivity for oil in oil/water mixtures with a separation efficiency of 99.1% with an exceptionally high flux of 8963 L m-2h-1. The SH-AIL-Ag-EC-Cu-Mesh has shown excellent reusability, and after 15 cycles of separation, no significant decrease in the oil/water separation efficiency was observed. Copyright © 2022 Elsevier Ltd. All rights reserved.

Citation

Nadeem Baig, Irshad Kammakakam. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation. Chemosphere. 2023 Feb;313:137544

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36528151

View Full Text