Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.


Wuwan Xiong, Linhui Liu, Anqi Guo, Dongdong Chen, Yulong Shan, Mingli Fu, Junliang Wu, Daiqi Ye, Peirong Chen. Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NOx Abatement by Recycling Organic Structure-Directing Agents. Environmental science & technology. 2023 Jan 10;57(1):655-665

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 36563090

View Full Text