Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state. © The Author(s) 2022. Published by Oxford University Press on behalf of the Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Citation

Anne E Sustar, Liesl G Strand, Sandra G Zimmerman, Celeste A Berg. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics. 2023 Feb 09;223(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36576887

View Full Text